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Abstract: We recast the study of a closed string gas in a toroidal container in the physical

situation in which the single string density of states is independent of the volume because

energy density is very high. This includes the gas for the well known Brandenberger-Vafa

cosmological scenario. We describe the gas in the grand canonical and microcanonical

ensembles. In the microcanonical description, we find a result that clearly confronts the

Brandenberger-Vafa calculation to get the specific heat of the system. The important point

is that we use the same approach to the problem but a different regularization. By the

way, we show that, in the complex temperature formalism, at the Hagedorn singularity, the

analytic structure obtained from the so-called F-representation of the free energy coincides

with the one computed using the S-representation.
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1. Introduction

Treating a gas of free closed superstrings when all the spatial dimensions are closed and

the system is kept in a thermal bath leads us to the well known conclusion that the

Helmholtz free energy diverges as one approaches the Hagedorn temperature from the low

temperature regime. This way, as the energy U also diverges, one can conclude that, in a

fixed temperature description, the Hagedorn temperature is a maximum one for the system.

Let us recast in the next section what the details for the description in the macrocanonical

ensemble with µ = 0 are. In particular, we will remind to the reader that the energy

fluctuations give us a measure about the very possibility of a fixed temperature description

of the system. In section 3 we will compare our results with the thermodynamics that stems

from generalized ensemble description of an analogous extensive system. After all this, we

will have then got some results to get into the treatment of the system at fixed energy in

section 4. There, in a first subsection, we will remember and critically recast the well known

computation by Brandenberger and Vafa [1]. Next, we will present another computation

that will reinforce the conclusion that the specific heat, as a function of energy, is divergent.

A final subsection will be devoted to explain whether volume dependent corrections can

change the picture. Finally, section 5 will present a few comments and serve as a reminder

of the main results.
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2. The macrocanonical description of closed strings at finite size

In a macrocanonical description at null chemical potential, the grand canonical parti-

tion function can be equated with the canonical partition function at a given number

of strings N∗. This number maximizes the canonical partition function Z(β,R,N) (i.e.,

[∂ Z/∂ N ]N=N∗ = 0). When the fluctuations in the number of strings are small, this maxi-

mum coincides with the averaged number of strings, N , as computed in the grand canonical

ensemble. To be more concrete: Θ (β,R, µ = 0) =
∑∞

N=0 Z (β,R,N) ≈ Z (β,R,N∗ (β,R))

and Z finally results a function of β and R only. This Z is what we call the partition func-

tion for the system of free strings. Minus the logarithm of the partition function divided

by β is what we call the free energy of the system and it is only a function of R and β and

not of the number of strings (see [2]). This will exactly correspond to the thermodynamical

free energy whenever a thermodynamical limit can be defined. The computation for the

gas of free superstrings gives

− βF (β) = β
2 6

π
√

α′

∫ +∞

0
dτ2 τ

−3/2
2 θ2

(

0,
iβ 2

π 2τ2α′

)
∫ 1/2

−1/2
dτ1 |θ4 (0, 2τ)|−16

×
∑

~m,~n

e
−πτ2

“

R 2

α′
~m 2+ α′~n 2

R 2

”

+2πiτ1 ~m·~n
(2.1)

This is the free energy in the so called S-representation. It is the result one gets when

computing the Helmholtz free energy in the light-cone gauge or by summing up over the

field content of the string (analog model) (see [3]). In the conclusions we will comment more

on this point and its relation to the F -representation, that coincides with the computation

of the free energy as a vacuum energy for the euclidean theory with euclidean time of length

β including winding modes around it.

Now, let us introduce an ultraviolet dimensionless cutoff ε in τ 2. This automatically

produces the splitting of the free energy as F (β) = F l (β) + F h (β) where F l is got1 by

integrating τ 2 from ε to +∞ and F h by integrating the same integrand over τ2 from 0 to ε.

The integral over τ1 simply represents the left-right level matching condition, i.e., a

Kronecker delta of the form δN−Ñ+~m·~n, 0. Here, Ñ and N stands for the right and left

oscillator numbers.

Supposing ε ¿ 1 has various implications. The Jacobi θ2 function, having the β

dependence, can then be approximated by the leading terms (two in fact) in the series

expansion representing it. This is physically equivalent to taking the classical (Maxwell-

Boltzmann) statistics approximation. One can also use the fact that τ2 ≤ ε to approximate

with arbitrary precision the contribution from integrating over τ1, i.e., implementing the

left-right level matching condition.

1F l, as it is written in this proper time representation, shows a divergence when τ 2 → +∞ for the

massless excitations of the string when momentum and winding numbers vanish. This is an artifact of this

representation that results from the second quantization of the vacuum state then producing a divergence as

lnτ 2 when τ 2 goes to infinity. This divergence should not be present with finite volume or, more precisely,

when the momenta are not dense, and can be subtracted without affecting the results of our work.

– 2 –



J
H
E
P
0
1
(
2
0
0
6
)
0
5
9

To compute first the integral over τ1, it is very useful to note that, when τ2 is small,

the main contribution to the integrand will come from a neighborhood of τ1 = 0.

Furthermore, one can choose ε small enough so as to have that εα′/R 2 ¿ 1 and,

simultaneously, εR 2/α′ ¿ 1. It is enough to choose ε to fulfill the most stringent criterion.

In fact, one criterion converts into the other by T-duality (R → α′/R). If R &
√

α′, one

can choose ε ¿ α′/R 2 in order to accomplish both criteria. When R .
√

α′ we have

that ε ¿ R 2/α′ suffices to satisfy both relations. We will see how these criteria, that

define the physical system we are treating and the kind of thermodynamical limit we are

taking, can be expressed in terms of energy density. This allows us to approximate the

sum over ~m and ~n (i.e., over winding and momentum numbers) by a multiple integral over

the whole R
18 on the real variables m1, . . . ,m9, n1, . . . , n9. This is a valid approximation

as given by the Euler-Maclaurin formula (see [4]). The multiple integral over windings

and momenta shows us that, for the contribution coming from the ultraviolet degrees of

freedom to F (β) (i.e., the contribution encoded in F h), no dependence on R, and then on

the volume V = (2πR) 9, will survive. This is so because the change of variables of unit

jacobian ~m −→ ~m
√

α′/R, ~n −→ ~nR/
√

α′ makes R to disappear in the multiple integration.

Everything happens as putting R =
√

α′ that simply shows the fact that a situation in

which R is in a neighborhood of
√

α′ also suffices to compute the sum by an integral. This

will be linked to the cosmological situation in which all the spatial dimensions are of the

order of the selfdual length and the system is, in some sense, small.

With all this together one can finally write

I(τ2) ≡ 2 8

∫ +1/2

−1/2
d τ1 |τ | 8 |θ2(0,−1/(2τ))|−16

∫

R9×R9

d~l d~k e−πτ2(~l2+~k2)e2π~l·~kτ1

= 2−17/2 τ
1/2
2 e 2π/τ2

+∞
∑

i=0

ai τ i
2

(2.2)

Where the modular properties of the transverse partition function have been used. We

remark again, that the main contribution in the τ2 → 0 limit for the τ1 integral comes

from the neighborhood of τ1 = 0. The coefficients ai are computable numbers (see the

appendix). In particular, a0 = 1

F h (β) can then be approximated, for 2π
(

β 2 − β 2
H

)

¿ εβ 2
H , as2

−F h (β) ≈ Γ

(

0,
2π

(

β 2 − β 2
H

)

εβ 2
H

)

+∞
∑

n=0

bn

(

2π
(

β 2 − β 2
H

)

β 2
H

)n

(2.3)

βH = π
√

8α′ is the inverse Hagedorn temperature for closed superstrings type IIA and IIB

(both have the same free energy because are indistinguishable at finite T ) and β−βH > 0.

The bn are coefficients that can be directly connected to the ai; for example, b0 = 1/βH ,

and, in general, the bn ∝ 1/βH are independent of ε computable numbers. The important

point now is that, as discussed in the appendix,

+∞
∑

n=0

bn

(

2π
(

β 2 − β 2
H

)

β 2
H

)n

=

+∞
∑

n=0

(−1)n
(β − βH)n

β n+1
H

=
1

β
(2.4)

2The well known relation Γ [a + 1, x] = aΓ [a, x] + x ae−x is very useful to this purpose.
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As it is implied by the behavior of Γ[0, z] for big z, F h goes exponentially to zero as

β − βH grows. Because there is no dependence on the volume, it is not true that we can

write F (β) = −PV . This gives more importance and justifies the detailed way we have

introduced F (β) at the beginning of this section. It is now clear from the behavior of

Γ[0, z] when z goes to zero that the contribution of F h to the free energy when β ∼ βh is

much bigger than that of F l because |F h| grows unbounded as β → β+
H as long as F l gets

the finite value F l(βH).

The concrete behavior around βH can be made more explicit by using that β 2 −β 2
H =

2βH (β − βH) + (β − βH) 2 ≈ 2βH(β − βH). One finally gets

−βF h (β) ≈
∫ +∞

0
dE θ

(

E − 4π

εβH

)

e− βE eβH E

E

= Γ

(

0,
4π (β − βH)

εβH

) (2.5)

This, by using inverse Laplace transformation, easily provides us the main ingredient to

get the fixed energy description, Ω1(E), i.e., the single string density of states.

Ω h
1 (E) = θ (E − Λ)

eβH E

E
(2.6)

The step function shows the utility of the dimensionless ε parameter by imposing the

condition E > Λ = 4π/(εβH ). This, when R &
√

α′, finally enforces E À 4πR 2/(βHα′)

as the condition for the validity of (2.6).3 For the T-dual situation, one gets the dual

condition.

It is now an immediate task to get U (β) around βH

U h (β) =
∂

[

βF h (β)
]

∂β
=

1

β − βH
e−4π(β−βH)/(εβH) ≈ 1

β − βH
(2.7)

Where we have taken that 0 < β − βH ¿ εβH/(4π) = 1/Λ.

Fluctuations in the macrocanonical energy are very useful for our study. They can be

computed to give, near βH

[

T 2 C h
V (T, V )

]1/2

U h
= 1 + O

[

(β − βH) 1
]

(2.8)

So energy relative fluctuations are finite and not negligible. This means that we may

expect the fixed energy (”micro”) description and this macrocanonical picture not to be

equivalent.

The entropy can easily be computed as a function of β to give

S h (β) = β 2 ∂F h

∂β
≈ βH

β − βH
− ln [Λ (β − βH)] (2.9)

3It is important to remark that E is here the energy of the states which are accessible by one string. This

condition can be compared to the one in [4] for the validity of converting the sum over winding and momenta

into an integral in the direct calculation of Γ1 from its very definition (Ω1 = dΓ1/dE); the condition is

E À R/α′. It is clear that E À 4πR 2/(βHα′) implies E À R/α′ if R &
√

α′.

– 4 –



J
H
E
P
0
1
(
2
0
0
6
)
0
5
9

The fundamental relation in the entropic representation can now easily be obtained to

be

S h ≈ βH U h + lnU h (2.10)

In the entropic representation it is manifest that the non extensive term ln U h is the

one responsible for the positivity of the specific heat. When energy is high, the logarithm

of the averaged energy is very small as compared to energy itself. If one sees the big

fluctuations as giving the error of the energy variable to produce S(E = U), one perhaps

should neglect the logarithmic term because is smaller than the error.

The macrocanonical calculation gives us the number of strings as −βF (β) if Maxwell-

Boltzmann statistics applies. Namely

−βF h (β) = N
h ≈ −ln [(β − βH)Λ] ≈ ln U h (2.11)

One can write the entropy in terms of the number of strings as a function of energy to

get

S h ≈ N(U h) + eN(U h) (2.12)

This expression for the entropy can be compared to the one for a regular system for

which the entropy scales with the number of objects as in the black body, for instance. In

our gas we have that the entropy near βH (that also gives high U) grows exponentially

with the number of objects. This behavior in terms of the number of strings can also be

compared to the open superstring case in which TH is a true maximum temperature [6].

For it, the entropy grows as 2N (U h) + KN
2
(U h)/V , with K a constant, and is a degree

one homogeneous function of energy and volume (extensivity is a property of the gas of

open superstrings in the infinite volume limit).

It is then clear that the specific heat, as a function of the temperature, is positive for

the high temperature phase, i.e., when T is near TH . The problem is that the order one

energy fluctuations tell us that U h is a bad canonical average for the high energy of the

non-isolated system.

3. The generalized ensemble and extensivity

The description at fixed temperature we have made is one very special. The reason is

that our system does not depend on volume because this variable does not appear in the

description of the system which is also at fixed temperature and null chemical potential.

A description through a generalized ensemble is one in which the system is charac-

terized by intensive parameters. In a simple system they are pressure, temperature and

chemical potential instead of volume, energy and the number of objects which are the

corresponding extensive parameters. Since our string gas is one for which no volume de-

pendence appears,4 the ensemble we have named grand canonical is really a generalized

ensemble.

4This is different from being a problem at zero pressure. In a system at zero pressure, the volume would

be a function of temperature. In our case, there is no volume dependence at all and then the pressure

vanishes.
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This ensemble does not appear thoroughly treated in regular textbooks on Statistical

Mechanics but can be found in [7]. The main point to take into account when reading this

textbook is that the treatment of the description using this ensemble depends on the fact

that extensivity is assumed for the system. The first notable fact about this ensemble, if

extensivity is assumed, is that fluctuations in volume, energy and the number of objects

must be big. The reason is that, in this picture, the system is characterized by pressure,

temperature and µ and then volume, total energy and the number of objects can get any

value with equal probability. It is worth to remark that this must be so when extensivity

holds.

Assuming extensivity in our problem would imply βF (β) = 0 because Euler’s relation

(U−TS+PV −µN = 0) would hold and we have µ = 0 and no volume dependence. On the

contrary, non extensivity allows a non vanishing free energy as computed previously, the

relative energy fluctuations to be big (order one) and, simultaneously, the fluctuations in the

number of strings to be small when energy is big enough. Indeed, the fluctuations in N(T )

are small because, when Maxwell-Boltzmann statistics and the dilute gas approximation

hold, they are given for any system by

√

∆N 2

N(β)
=

√

(z∂z)
2 (z q)

q
=

1√
q

=
1

√

N (β)
(3.1)

where q = −βF (β) is the single object partition function, a function of T and V in general

and only of T in our problem. For the classical counting, q gives the number of objects.

The general application of this result is not in contradiction with the fact that, in the

generalized ensemble when extensivity holds, the fluctuations in the number of objects are

big. When the system is extensive all the subsystems in the generalized ensemble with

different object numbers are equally probable and then, to get the partition function, the

sum over the number of objects does not run up to infinity (see [7] again).

On the other hand, the fact that for any extensive system at µ = 0 and with no

volume dependence one has U − TS = 0 has immediate consequences. By putting T =

∂U/∂S, U − S ∂U/∂S = 0 can be understood as a differential equation that can be solved

to give S = β0U where β0 is a constant of integration that gives the constant inverse

temperature of the system. In our problem this β0 is βH . From the point of view of Legendre

transformations, this is the most simple and extreme case for which the transformation

cannot be defined because the system has an infinite specific heat. Furthermore, if we

now associate a density of states to the obtained entropy we have Ω (E) = Kβ0e
β0E ,

where K is a positive dimensionless constant. Computing now back the partition function

Z (β) thorough Laplace transformation we obtain5 Z (β) = K β0

∫ +∞
0 dE e−(β−β0) E =

K β0/ (β − β0). So we find the surprising result that the free energy is not zero, but

actually βF (β) = ln [(β − β0) / (Kβ0)]. The free energy must be negative and then has

physical meaning when β is near and bigger than β0 so, after all, there is a maximum

temperature T0 and there must also be an energy cutoff for the validity of Ω (E). Finally,

5We could have included a cutoff φ to get Z (β) = K β0e
−φ(β−βH)/ (β − β0).

– 6 –
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one exactly gets the singular dominant term in the incomplete Gamma function in (2.5)

identifying T0 = TH ; i.e. the logarithmic contribution. This is a very simple example of

non equivalence of ensembles so brightly explained in [8] and that relies upon the interplay

between Legendre and Laplace transformations. It is very important to notice that the

single object partition function −βF (β) we get actually coincides with the one in (2.11).

Conversely, one can easily show that if the canonical energy is a function of T such

that, at T = T0, (β − β0) U (β) gives zero (or a constant) when β approaches β0 then, since

S(β) = βU(β) for a volume independent extensive system at µ = 0, one gets that S(β) =

β0U(β) around β0. But, in fact, we have already arrived at the fundamental thermodynamic

relation S = β0 U that implies that the temperature is constant and equal to T0. This

contradicts the hypothesis assuming that the internal energy is a function of a variable β.

The final output is then that S = β0U only makes sense in microcanonical thermodynamics

and, more than this, extensivity holds for the microcanonical thermodynamics we get.

It is certainly a notorious fact that, in this particular case, one can deduce the exponen-

tial growth of the density of states with energy from the hypotheses that extensivity holds,

the system does not depend on volume and equilibrium is got at zero chemical potential.

In fact, all the above reasoning simply tells us that Ω(E), the density of states for the gas

of strings, is a constant times eβH E when energy goes beyond a certain value, let’s call it φ.

However, this contradicts the computation in [1] in which a different non independent of

the volume non extensive high energy entropy is found. This makes us suspect that there

is something wrong in that computation.

On the other hand, the grand canonical description of the closed string gas near TH

and under the condition that windings and momenta are equivalent is really a generalized

ensemble description but without assuming extensivity. Non extensivity is usually related

to a kind of smallness of the system in size or number of objects, the presence of long

range interactions or a critical behavior. We will dwell a bit more on this point in the final

section.

4. The fixed energy description of closed strings at finite size

In order to study the fixed energy description of the gas of closed strings, an expression

for the multiple string density of states, Ω (E), is needed. This has been done in the past

in several ways. One could use, for example, a saddle point approximation to calculate

the asymptotic expression for the density of states of the string gas, using the fact that

Ω (E) = L−1 {exp (−βF (β))}. However, once the single string density of states is provided,

Ω (E) can be obtained using the convolution theorem [9]. This is the method used long

time ago by R. Brandenberger and C. Vafa [1] (see also [10]), who calculated6

Ωn (E) =
1

n!

∫ E

Λ

n
∏

i=1

dEiΩ1(Ei)δ

(

∑

i

Ei − E

)

. (4.1)

6Only for the Maxwell-Boltzmann statistics Ωn can be understood as the density of states for a gas with

n strings [2].
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28 56
t

3.·10214

2.·10214

1.·10214

ω2(56,t)

Figure 1: ω2(56, t) computed numerically. The continuous line represents ω2 as given by using Ωh
1

only (α′ = 1).

Ω1(E) can be expressed as sum of two terms Ωl
1(E) and Ωh

1(E) where the superscripts l and

h refer to the low and high energy expressions. This introduces a cutoff Λ separating both

regimes that can exactly be written as our cutoff 4π/(εβH ) on the energy of one string. In

fact we can obtain ΩN (E) with a high degree of accuracy only from the convolutions of

Ωh
1(E) as in the gas of open strings [6]. The convolution between Ωl

1(E) and Ωh
1(E) to give a

contribution to Ωh
2(E) is negligible, as can clearly be seen in figure 1 where the comparison

between the exact calculation7 of ω2(E, t) = Ω1(E−t)Ω1(t) and its approximation resulting

from considering only the high energy part approximated by Ωh
1 in (2.6) is shown at E = 56,

R =
√

α′ = 1. ω2 is a measure of equipartition of energy between the two strings. In fact,

it is figure 1 that lets us fix the cutoff Λ = 4π
εβH

4.1 The calculation of Brandenberger and Vafa revisited

Taking into account that8 Ω (E) =
∑∞

n=0 Ωn (E), and using (2.6), for the single string

density of states when E > Λ, Brandenberger and Vafa obtained

Ω h (E) =
eβHE

2πE

∫ ∞

−∞
dα e−iα e

R 1
Λ
E

dx
x

eiαx

=
eβHE

Λ

(

a + b
Λ

E

)

(4.2)

where:

a =
1

2π

∫ ∞

−∞
dα e

R α
0 dx cos x−1

x cos

(
∫ α

0
dx

sinx

x
− α

)

= 0.56 ± 0.01

b =
1

2π

∫ ∞

−∞
α dα e

R α
0

dx cos x−1
x sin

(
∫ α

0
dx

sin x

x
− α

)

= −0.29 ± 0.01

The values of a and b were calculated numerically. Note that, although the exponent

gives, when α À 1, a factor − log α, the second integral is not convergent because of the

7This means that we have used an exact form for the coefficients giving the degeneration number at each

mass level of the superstring and the sum over winding and momenta has been obtained by integration.
8For n = 0 we have that Ω0 (E) corresponds to the vacuum state, whose density of states is Dirac’s

delta.
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oscillatory behavior of the integrand, and so it has to be regulated and they did it by using

an exponentially decaying factor. The sign of b produces a positive specific heat, and the

Hagedorn temperature is then a maximum one in the microcanonical ensemble. We think,

nevertheless, that this scenario needs a revision: there is nothing a priori unphysical in

negative specific heats in the microcanonical ensemble, and anyhow, we are not sure that

there could be a positive specific heat phase in the microcanonical ensemble for the gas of

strings with windings and momenta.

In fact, it is easy to see how a contradiction appears, when b = −0.29, in the following

way: using (4.2) and the fact that Z (β) = L{Ω (E)} the following expression for the

partition function can be obtained:9

Z h (β) =
a e−(β−βH)φ

Λ (β − βH)
+ bΓ [0, φ (β − βH)] (4.3)

whereas from the single density of states it is possible to arrive also to an expression for

the multiple string partition function via the equality −βF (β) = L{Ω1 (E)}

Z h (β) = e−βF (β) =
e−γ

Λ (β − βH)
+ e−γ + O

[

(β − βH)1
]

(4.4)

Comparing (4.3) and (4.4), one immediately gets that10 a = exp (−γ) = 0.5614, which

perfectly agrees with the numerical value given in [1]. But it is a very notorious fact that

in (4.4) no term is found analogous to the logarithmically divergent one hidden in the

incomplete gamma function of (4.3).

Furthermore, we have found an alternative calculation where the coefficient b is actually

zero and then, only one divergent term is present in both equations (4.3) and (4.4). As

it is written in (2.6), the high energy dominant term in the single string density of states

has a dimensionless factor which equals unity in the type II and the heterotic string (this

factor could be volume dependent when considering open strings and branes). However, it

is very useful to introduce in Ω1 (E) a factor c that could be thought just as a regulator

(whereas we are going to give it a physical meaning at the end of this subsection). This

change adds a factor cn to Ωn in (4.1). Only at the end the limit c approaching to one

will be taken. Furthermore, it is possible to work out the values of a and b analytically

if a simple change is made in (4.1): the key ingredient is noting that the upper limit in

the integrals can be taken to infinity since the Dirac delta function ensures that no value

greater than E will contribute to them. This will render the final integrals much easier to

perform; then, we will have

∫ E

Λ
dEi −→

∫ +∞

Λ
dEi ⇒ Ω h (E) =

eβHE

2πE

∫ +∞

−∞
dα e−iα e

c
R

∞

Λ
E

dx
x

eiαx

(4.5)

9The multiple string density of states must have a cutoff that indicates the range of validity of the

asymptotic approximation and that would be, in general, different from the single string cutoff. We are

using φ as the cutoff for the multiple string density of states.
10This expression for a was roughly deduced in [11], although no connection with the numerical value

of [1] was made there.
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The calculation is now analogous to the one made in [1], taking the first terms in the

series expansion in Λ/E.

Ω h (E) =
eβHE

2πE

∫ +∞

−∞
dα e−iα e

c
R

∞·sg(α)
αΛ
E

dx
x

cos x
e
ic

R

∞·sg(α)
αΛ
E

dx
x

sin x

=
eβHE

2πE

∫ +∞

−∞
dα e−c·Ci(αΛ

E ) cos

(

α + c · si
(

αΛ

E

))

(4.6)

Where sg (α) stands for the sign function. It is important to note that the Ci and the

si functions only coincide with the standard cosine integral and sine integral functions

for positive values of α. Ci (x) is a real, even function of x whereas si (x) is a real, odd

function of its argument with a discontinuity at x = 0 and si (0) = 0. This is easy to

understand as a consequence of the integral upper limits including the sg (α) term in

the exponential factors in (4.6). The integrand is then even and one could perform a

series expansion in terms of αΛ/E. Approximating Ci
(

αΛ
E

)

= γ + log
(

αΛ
E

)

+ O
(

αΛ
E

)

and

si
(

αΛ
E

)

= −π
2 + αΛ

E + O
(

αΛ
E

)2
(α > 0), we arrive at

Ω h (E) = e−γ eβHE

πE

(

E

Λ

)c ∫ ∞

0

dα

αc
cos

(

α − c
π

2
+ c

αΛ

E

)

(4.7)

Using that cos (a − b) = cos a cos b + sin a sin b and taking the lowest order in αΛ/E

one finally gets

Ω h (E) =
Ec−1

Λc
eβHE

[

a(c) + b(c)
Λ

E
+ O

(

Λ

E

)2
]

(4.8)

a (c) =
e−cγ

π

∫ ∞

0

dα

αc
cos

(cπ

2
− α

)

=
e−cγ

Γ (c)
if 0 < c < 1

b (c) =
c e−cγ

π

∫ ∞

0

dα

αc−1
sin

(cπ

2
− α

)

=
c e−cγ

Γ (c − 1)
if 1 < c < 2

The integrals converge only for the indicated values of11 c. Clearly, in the c → 1 limit, the

result for a is fully compatible with the numerical value given in [1]; the problem is that it

is very easy to see how in this limit b goes to zero. As a matter of fact this method can be

generalized and more terms of the form dn (Λ/E)n (n ∈ N) can be computed, giving all of

them zero for dn in the c → 1 limit.

Now, it is straightforward to see how the contradiction between the equations analogous

to (4.3) and (4.4), that now depend on c, has disappeared. Using Ω1 (E) = c eβHE/E we

have that

Z h (β) = e−c βF h(β) ≈ e−c γ

Λc (β − βH)c +
c e−c γ

Λc−1 (β − βH)c−1 + O
(

(β − βH)2−c
)

. (4.9)

And making directly the Laplace transform of (4.8), the same expression for Z (β) =

L{Ω (E)} can be found for c > 1. When c = 1 an annoying constant term appears

preventing us to fix more than the only divergent term.

11One could be tempted to put directly, in the expression for a (c), that, when c = 1, cos
`

π
2
− α

´

= sin α;

but this would produce a wrong result since we would be forgetting that si (0) = 0.
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Once the value c = 1 is taken, the expression for the density of states of the string gas

in a finite size container is given by

Ω h (E) = e−γ eβHE

Λ
E À Λ. (4.10)

From this we can calculate both the entropy of the system and its temperature. The

fundamental thermodynamic relationship giving the entropy as a function of the energy

now looks like

Sh (E) = βHE + log

(

e−γ

Λ

)

. (4.11)

Comparing it with (2.10), the analogous expression in the fixed temperature, case we see

how both ensembles seem to be inequivalent as pointed in (2.8). With this entropy we will

also have that temperature is fixed to Hagedorn’s, and we would have to conclude that

CV (E) would be infinite.

The constant c has been introduced as a mere way of doing analytical continuation

of ill-defined expressions, but we can give it a physical interpretation. Lets look at the

expression defining Ω (E) once c is introduced

Ω (E) =
∞

∑

n=0

cn Ωn (E) (4.12)

We see that c is really acting as the fugacity of the system, so that working with a

generic value of c and then performing the c → 1 limit is exactly the same as working with

a generic non null chemical potential and then taking it to zero. This interpretation also

lets us know that we have not been working in the microcanonical ensemble, but in the

”enthalpic” one [2] for which energy and the chemical potential are given. This way Ω (E)

now depends on c and becomes Ω (E, c).

4.2 Fluctuations for the fixed energy description

It is now clear that the density of states of the string gas is given by

Ω h (E) =
e−γ

Λ
θ (E − φ) eβH E (4.13)

The multi-string energy cutoff φ cannot be completely determined without matching the

high energy regime with the low energy phase because, imposing that βF h (β) must be

obtained, φ would appear as a factor of (β − βH) 0 that is a regular term being F l (β) also

regular at βH . The matching can be done, but we are not going to dwell further on this

point.

An immediate consequence of (4.11) is that the high energy microcanonical specific

heat, C h
V (E), is divergent contrary to what, by using [1], has been assumed as true for

more than fifteen years.12

12In the next subsection and the conclusions, we will treat and discuss the relevance that the radius

corrections can have in relation to this thermodynamical statement.
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Once Ω (E, c) for the enthalpic ensemble is obtained, it is straightforward to compute

the number of strings and its fluctuations as

N (E) = c ∂c log Ω (E, c)|c=1 ≈ log

(

E

Λ

)

√

∆N2 (E)

N (E)
=

√

(c ∂c)
2 log Ω (E, c)

∣

∣

∣

c=1

N (E)
≈ 1

√

N (E)

with

Ω h (E, c) = θ (E − φ)
e−cγ

Λ cΓ (c)
E c−1eβHE

[

1 + (c − 1) O

(

Λ

E

)

+ · · ·
] (4.14)

that has been obtained by Laplace inversion of e c q(β).

4.3 Other refinements

In the preceding sections any dependence on R has been lost as a result of being in a

physical situation in which sums can be well approximated by integrals. Now, we would

like to add the effects of introducing Euler-Maclaurin corrections [4] in the integrals that

represent sums over windings and momenta. This can also be done by means of a Poisson

resummation. As a result, there appear more singular points in −βF (β) whose location

depends on R [11].

−βF h (β) =
∑

~m,~n,j

Γ



0,
2π

(

β 2 − β~m,~n,j (R) 2
)

εβ 2
H



 (4.15)

with

β 2
~m,~n,j =

α′π 2

(j + 1/2) 2

[

2 − R 2

α′
~m 2 − α′

R 2
~n 2

]

(4.16)

Assuming R >
√

α′ the singularity nearest to βH is β1 = βH − η, η ≈ α′βH/(4R 2).

Considering also the term depending on β1 we get a corrected expression for the density

of states

Ω h (E,R) =
e−γ

Λ
θ (E − φ) eβH E

(

1 − e−ηE (ηE)17

Γ (18)

)

(

e−γ

2ηΛ

) 18

(4.17)

Where ηE À 1 has been assumed. This expression depends on R through η and the R

corrections are actually non extensive. If taken into account, the effect of these corrections

on β would be

β (E) = βH + η
e−ηE

Γ (18)
(ηE)17 (4.18)

The second term on the right hand side of this expression has already been studied

in the literature [11, 12] and has been frequently claimed as being the cause of having a
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positive specific heat. It is easy to see that, after all, having enough energy for a given

radius, the gas can always be in the regime in which there is no dependence on the volume

and this is the regime of the Brandenberger-Vafa scenario, for which the specific heat

diverges. The radius corrections are exponentially suppressed and, for our system, are not

different from the finite volume corrections that are dropped when the thermodynamic

limit is taken over the ideal gas of particles (see, for example, [2]).

5. Conclusions

As a first important result, it is crucial to remark that no published calculation has found

the −0.29 eβH E/E term but the one presented by Brandenberger and Vafa in [1]. This

is the term that is needed to state, as these authors do, that the microcanonical specific

heat is positive in the physical situation in which energy density is so high that the density

of states does not depend on the volume. As far as we know, what any other calculation

actually gets is that, for the same physical situation, the specific heat is divergent because

a null b coefficient is found (see eq. (4.2)). In reference [11], it is explicitly admitted that

b = −0.29 is not found, but the authors do not face the important question that the

contradiction between their calculation and that of Brandenberger and Vafa rises. It seems

that this is so because they consider they are using what they call a different ”formalism”.

In our work, we clearly show that, using the same technique Brandenberger and Vafa used

and a physically meaningful regularization,13 the b coefficient vanishes (and also any other

high energy correction). This is the first result of our work and, in our opinion, critically

depends on understanding that the ”micro” ensemble is really the ”enthalpic” one, namely,

a fixed energy and fixed chemical potential ensemble.

We have used the S-representation of the Helmholtz free energy to finally conclude

that the behavior of the free energy around βH coincides with what is gotten from the F

representation. This might be expected but it is not a trivial fact,14 because both represen-

tations do not coincide. That the S and F representations are not equal seems to be clearly

commented for the first time in [13]. The relationship between both representations is care-

fully studied for the family of the heterotic strings in [14] (see also [15]). In those works it

is clearly established that the F -representation does not provide an analytical function for

complex β. In other words, it is false that the F -representation can be seen as providing

the analytical continuation of the S-representation for heterotic strings. Then, it is not

rigorous to say that the F -representation of the free energy can be used to get the density

of states by inverse Laplace transformation of the corresponding partition function. What

one can only do is to continue the S-representation. When one uses the F -representation

to get the behavior around βH one is really using it in the interval (βH ,+∞) where it co-

13Brandenberger and Vafa stay that they use an exponential regulator for a numerical computation.
14In the previous versions of our work we thought on the contrary because we found only the leading

order contribution in (2.2). In fact, a seemed very concerned referee, after reading the first version of our

work, was fully convinced of the difference between the F and S representations for this calculation and

used it to reject the work without any hesitation because he/she liked more the F -representation.
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incides with the S-representation. Now, we are also providing a very concrete and explicit

example of to what extent the S and F representations of the free energy are equal.

From other point of view, taking into account that the F -representation gives the free

energy as computed for the compactification of the euclidean time on a circle of length β

(including string windings along it), in [16] there appears a proof for the noncritical c = 1

string of the recently emphasized fact that, for strings, the free energy cannot be computed,

at any temperature, by the compactification of time [17].

Another important point is to what extent the R corrections presented in subsection 4.3

can be taken as showing that the system really has a positive specific heat. This seems

to be the belief as expressed in [11] and [12]. In our opinion, the problem is that these

nonextensive corrections are exponentially suppressed with the value of the energy and

are then of no thermodynamical relevance for the system in the thermodynamical limit

in which the energy density is very high and the sum over windings and momenta can be

replaced by an integral. Those corrections are as the finite volume 1/
√

V corrections for

the gas of free particles; they are irrelevant in the thermodynamical limit in which the sum

over momenta can be replaced by an integral.

In the case we treat the gas in the fixed temperature (canonical) description, the big

fluctuations might justify the exclusion of the nonextensive term that renders the canon-

ical specific heat positive. In any case, those fluctuations would just make the canonical

equilibrium description physically unusable.

From a cosmological point of view, one could think that there would not be any relevant

cosmological implication from our results because, after all, the equation of state would

still be the same, corresponding to pressureless dust matter (P = 0). However, things

are more intricate because a divergent microcanonical specific heat can be an indication

of a phase transition. In our case, what we have done in the microcanonical (really en-

thalpic) treatment is a description of how the volume of phase space in the N-body problem

changes when energy, which is a conserved quantity, increases [18]. We have found that

the system behaves very differently from the grand canonical ensemble in which TH would

be a maximum temperature and the specific heat, as a function of temperature, would be

positive.

What is clear is that a divergent microcanonical specific heat cannot be used ab initio

as a criteria to drop as unphysical our gas of closed strings at finite size.
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A. The UV limit in the S-representation partition function

This appendix is devoted to explain how (2.2) is obtained and to explicitly show that (2.4)

holds.
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First of all, the integral computing the sum over windings and momenta can be per-

formed to give
∫

R9×R9

d~l d~k e−πτ2(~l 2+~k 2)e2πi~l·~kτ1 = |τ |−9 (A.1)

Next, it has to be noticed that, when τ → 0, it holds that

|θ2(0,−1/(2τ))|−16 ≈ 2−16 e2πτ2/|τ | 2

because all the other terms are finite when τ → 0. One has then to perform the integral

over τ1 as providing a function of τ2 given by e 2π/τ2 times a series expansion in powers of

τ2 as it appears on the right hand side of (2.2). Namely, the left hand side of (2.2) (we

called it I(τ2)) is now given by

I(τ2) =
1

2 8τ2
e2π/τ2

∫ +1/2

−1/2
dτ1

(

1 +
τ 2
1

τ 2
2

)−1/2

e−2πτ 2
1 /τ 3

2 e

2π

τ2[1+τ 2
1

/τ 2
2 ]

− 2π
τ2

+
2πτ 2

1
τ 3
2 (A.2)

It has been written in a way prepared to be rewritten in terms of a function Ĩ(τ2) as

I(τ2) = 2−8τ
1/2
2 e 2π/τ2 Ĩ(τ2) where

Ĩ(τ2) =

∫

“

2τ
3/2
2

”

−1

−
“

2τ
3/2
2

”

−1
dx e−2πx 2

e
2π
τ2

h

1
1+x 2τ2

−(1−τ2x 2)
i

(

1 + τ2x
2
)−1/2

(A.3)

For which the change of variables τ1 = x τ
3/2
2 has been used. Now, for the product of the

last two factors in the integrand, the following series expansion can be written

e
2π
τ2

h

1
1+x 2τ2

−(1−τ2x 2)
i

(

1 + τ2x
2
)−1/2

= e2πx 4τ2/(1+τ2x 2)
(

1 + τ2x
2
)−1/2

(A.4)

=

+∞
∑

b=0

+∞
∑

a=0

(−1) a(2π) b Γ (b + a + 1/2)

b! a! Γ (b + 1/2)
τ b+a
2 x 4b+2a

Next we are able to perform the integral over x of the term x4b+2a obtaining

∫

“

2τ
3/2
2

”

−1

−
“

2τ
3/2
2

”

−1
dx e−2πx 2

x4b+2a =
Γ (2b + a + 1/2) − Γ

(

2b + a + 1/2, 2π/(4τ 3
2 )

)

(2π)2b+a+1/2

≈ (2π)−2b−a−1/2 Γ (2b + a + 1/2)

(A.5)

where the last approximation results from the exponential suppression of the contribution

coming from the incomplete Gamma function when its argument gets big (what happens

here when τ2 → 0).

Now one of the sums in the resulting double sum to get Ĩ can be calculated (!!) to

finally give

Ĩ(τ2) =
+∞
∑

b=0

(2π)−b−1/2 Γ (b + 1/2) τ b
2 (A.6)
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We are then able to get I(τ2) and, in particular, the coefficients ai as

ai =
Γ (i + 1/2)

(2π) i
√

π
(A.7)

The next step is to use I(τ2) as written in (2.2) with the already known ai coefficients to

compute F h(β) finding then the bn factors in (2.3). This is easily done to give

bn = (−1)n an

βH n!
(A.8)

The final computation is that of the series generated by the bn coefficients as it appears

on the left hand side of (2.4), namely

R(β) ≡
+∞
∑

n=0

bn

(

β 2 − β 2
H

)n
(

2π

β 2
H

)n

(A.9)

Taking into account that β2 − β 2
H = 2βH (β − βH)

(

1 + β−βH
2βH

)

, R(β) can be written as a

double sum

R(β) =
+∞
∑

n=0





1√
π

n
∑

q=0

(−1) q 2 2q−nΓ (q + 1/2)

(n − q)! (2q − n)!





(β − βH)n

β n+1
H

(A.10)

The term between square brackets can be computed to give exactly (−1)n. So, we have

finally showed that

R(β) = 1/β (A.11)

by showing that it is given by the power series expansion of 1/β around βH .
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